An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions
نویسنده
چکیده
This paper contains new explicit upper bounds for the number of zeroes of Dirichlet L-functions and Dedekind zeta-functions in rectangles.
منابع مشابه
Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملZeros of Dedekind zeta functions in the critical strip
In this paper, we describe a computation which established the GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number fields) with small discriminant. We use a method due to E. Friedman for computing values of Dedekind zeta functions, we take care of accumulated roundoff error to obtain results which are mathematically rigorous, and we generalize Turing’s criterion to prove t...
متن کاملOn the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes
Lately, explicit upper bounds on |L(1, χ)| (for primitive Dirichlet characters χ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds ...
متن کاملOn Fourier and Zeta(s)
We study some of the interactions between the Fourier Transform and the Riemann zeta function (and Dirichlet-Dedekind-Hecke-Tate L-functions).
متن کاملImprovements to Turing's method
This article improves the estimate of the size of the definite integral of S(t), the argument of the Riemann zeta-function. The primary application of this improvement is Turing’s Method for the Riemann zeta-function. Analogous improvements are given for the arguments of Dirichlet L-functions and of Dedekind zeta-functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 84 شماره
صفحات -
تاریخ انتشار 2015